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Abstract-The two-phase mixture model developed in Part I is applied to investigate a pressure-driven 
two-phase boiling flow along a heated surface embedded in a porous medium. The general governing 
equations in Part I for the transport of mass, momentum and liquid (constituent) mass for the two-phase 
mixture are simplified for the above system. The present formulation, owing to its strong analogy to the 
classical description of multicomponent convective flows, suggests that a thin capillary layer exists over 
the solid surface at high Peclet numbers and that the two-phase flow is confined only to this boundary 
layer. Using approximations analogous to the classical boundary layer theory, a set of boundary layer 
equations for two-phase flow is derived and solved by a similarity transformation. The resulting ordinary 
differential equations are numerically integrated using a combination of the Gear stiff method and a 
shooting procedure. Numerical results for the saturation field and the flow fields of the two-phase mixture 

and the individual phases are presented and discussed. 

1. INTRODUCTION 

IN ORDER to demonstrate the utility of the two-phase 
mixture model developed in our previous paper [l], 
referred to as Part I hereafter, we analyze a practical 
problem of both academic and engineering interest, 
that is, two-phase boiling flow along a heated body 
embedded in a porous medium. This problem has 
become increasingly important in many engineering 
applications, including, for example, the cooling of an 
igneous intrusion in a geothermal reservoir [2], the in 
situ removal of thermal energy from nuclear reactor 
debris formed by a degraded core accident [3], the 
geological repository of high-level nuclear waste 
packages [4, 51, and the transport processes inside 
heat pipes [6]. 

A survey of the literature reveals that a great num- 
ber of analytical studies on boiling in a porous med- 
ium adjacent to a heated surface have appeared during 
the past decade. For example, in the pioneering works 
of Parmentier [7] and Cheng and Verma [8] the boiling 
process in the neighborhood of a vertical heated plate 
in a porous medium filled with a quiescent liquid was 
modeled. Later, Orozco et al. [9] extended the analysis 
to cylindrical and spherical geometries. Other hydro- 
dynamic and thermal aspects of the problem, such as 
the effects of liquid subcooling, main flow, tilting 
angles of plates, and the inclusion of non-Darcian 
terms, have also been thoroughly addressed in the 
subsequent literature. However, all these inves- 
tigations have assumed a negligible capillary force 

resulting from liquid-vapor interfacial tension. As a 
result, it has been presumed that the vapor and liquid 
phases are completely separate. That is, two single- 
phase layers separated by a distinct interface are 
formed adjacent to the heated surface. Thus, the 
problem is greatly simplified and can be formulated 
using single-phase governing equations. Analytical 
solutions have been obtained at the expense of neglect- 
ing the two-phase characteristics that are inherent in 
this class of problems. 

Recently, however, experimental evidence [l&12] 
has strongly suggested that the inclusion of capillary 
effects in a theoretical model is necessary to achieve 
quantitative agreement with experimental data. Thus, 
an analysis is required for the transport phenomena 
inside the two-phase mixed zone that appears when 
the capillary effect is included. 

A boiling flow along a heated surface immersed in 
a porous medium is analyzed in this study. Specifi- 
cally, the special case is considered where a pure liquid 
at its boiling temperature is forced to pass along a hot 
surface where it is partially boiled into vapor. The 
present investigation is limited to pressure-driven two- 
phase flow, while buoyancy effects are not taken into 
account. Furthermore, a constant liquid saturation is 
assumed to be present at the surface. It is shown 
that, via the formulation developed in Part I, a semi- 
analytical solution is possible. Moreover, a similarity 
solution exists for the present problem within the 
classical boundary layer approximation well known 
in single-phase fluid dynamics, thereby addressing a 
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NOMENCLATURE 

constant in equation (43) 

capillary diffusion coefficient, equation 

(4) 
constant part of capillary diffusion 
coefhcient, equation (7) 
dimensionless capillary diffusion 
coefficient. equation (8) 
stream function. equation (3 1) 
latent heat of phase change 
capiliary pressure function 
diffusive mass fiux 
absolute permeability 
relative permeability 
plate length 
pressure 
scaled pressure 
two-phase Peclet number, equation ( 16) 
heat flux 
dimensionless local wall heat flux, 
equation (21) 
liquid saturation 
velocity vector 
velocity in .r-direction 
scaled velocity in .r-direction 
velocity in I,-direction 
scaled velocity in y-direction 
coordinate normal to the plate 
transformed .r-coordinate 
coordinate along the plate 

I transformed J>-coordinate. 

Greek symbols 

a dimensionless viscosity function 
^/ dimensionless density function 

h, PI---P, 
b boundary layer thickness 
c small value, equation (23) 

‘1 similarity variable 
L relative mobility 

{t viscosity 
1’ kinematic viscosity 

L’ density. 

Subscripts 
dry dryout state 

; 
irreducible 
liquid 

max maximum 
V vapor 
w wall 
<I two-phase boundary layer 
‘CC infinite. 

Superscripts 
ratio of properties of liquid to vapor 
average 

* dilnensionless 
derivative with respect to il. 

- 

novel aspect of boiling flows over heated surfaces in 
porous media that, to date, appears to have been 
unnoticed. The general formulation of the problem is 
given in Section 2, while in Section 3 the boundary 
layer approximations are invoked. The similarity 
transformation is developed in Section 4. Numerical 
procedures are detailed in Section 5, and the results 
of the calculations are reported and discussed in 
Section 6. The results include the liquid saturation 
distribution as well as the flow fields of the two-phase 
mixture and the individual phases. 

2. FORMULATION 

We consider a heated flat plate which is submerged 
in an infinite porous medium, as depicted in Fig. 1. 
The porous structure is filled with a liquid passing, 
with a constant velocity, u,,, over the surface under 
an external pressure difference. The heat input over 
the surface is sufficiently high to induce evaporation 
and/or boiling in its vicinity. As a consequence, a two- 
phase region, consisting simultaneously of liquid and 
vapor, is formed adjacent to the solid surface. The 

two-phase Row in this mixed zone is the object of the 
present investigation. 

The liquid saturation. a conventional concept in 
the field of multi-phase flow through porous media, 
equals unity at a location far from the surface, while 
it is assumed to be uniform at the surface. A dryout 
condition is reached when the liquid saturation at the 
surface approaches zero. which implies that the liquid 
evaporates completely in the immediate neighbor- 
hood of the plate. This critical condition is charac- 
terized by a certain value of the heat flux, which is 
similar to the critical heat flux in pool boiling in an 
open space. As the heat flux increases further, a pure 
vapor film forms over the heated plate and continues 
to grow, finally leading to a meltdown of the plate 
material. Although the present analysis is restricted 
to the regime prior to dryout, it is, nevertheless, poss- 
ible to deal with the post-dryout regime by combining 
the present results with traditional film flow analyses 
such as those given in refs. f13, 141. 

As in Part I, we treat the two-phase mixture essen- 
tially as a binary mixture whose transport properties 
depend only on the local concentration (liquid satu- 
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FIG. 1. Schematic diagram of pressure-driven boiling two- 
phase flow in porous media. 

ration), s. The mean density and kinematic viscosity, 
as obtained in Part 1, are : 

P(~)=P,Y(s)=P,[l+(l--s)] (1) 

and 

[ 1 
--I 

v(s) = v@(s) = VI k,,(s) + ;k,,(s) (2) 

where p, and v, are the density and viscosity of the 
liquid, respectively, and Ap = pi - py with pv being the 
density of the vapor. Likewise, v, is the kinematic 
viscosity of the vapor. The terms y(s) and p(s) denote 
the coefficients of the mean density and viscosity, 
respectively, and k,(s) and k,,(s) are the relative per- 
meabilities of the two phases. In addition, we utilize 
the concept of a total diffusive mass flux, j, of a con- 
stituent (phase), which is a combination of the capil- 
lary diffusive flux and the gravity-induced migrating 
flux [ 11. Since the latter flux is assumed to be negligible 
in the present study, the total diffusive mass flux 
simply reduces to 

j = -D(s)Vs (3) 

where the capillary diffusion coefficient, D(s), is 
linearly proportional to the gradient of the capillary 
pressure, which in turn, is a function of the local liquid 
saturation, s. Assuming that, to a first approximation, 
this diffusivity is isotropic, we express the capillary 
diffusion coefficients as [l] 

D(s) = $a@)[‘-n(s)] - d$) 
[ 1 = D,ri (4) 

where 1(s) is the relative mobility given by [l] 

with C denoting the ratio of the liquid and vapor 
kinematic viscosities ; i.e. 

F = v,/v,. (6) 

The term D, in equation (4) is the constant part of the 
saturation-dependent capillary diffusion coefficient ; 
i.e. 

D, = (eK)‘%/v, (7) 

and 6 denotes the dimensionless capillary diffusion 
coefficient encompassing all variable factors 

acs> = W[l -WI Ws) 
B(s) [ 1 ds (8) 

with J(s) being the capillary function, which is 
assumed to depend on the liquid saturation only. The 
basic transport functions k,(s), k,,(s) and J(s) are 
taken to be known, and their explicit forms used in 
this analysis are provided in Section 5. 

2.1. Basic equations 
The general equations governing the transport of 

mass, momentum and energy for two-phase mixtures 
in porous media were derived in Part I. These are 
simplified for the present problem by assuming that 
the boiling flow is : (1) steady; (2) isothermal across 
the entire two-phase region ; (3) driven purely by an 
external pressure difference so that the pure liquid 
outside the two-phase region has a uniform upward 
velocity and gravitational effects are absent ; and (4) 
heated solely by the surface. Then we have : 

conservation of mixture mass : 

V*(pu) = 0 

conservation of mixture momentum : 

(9) 

K 
u= ------VP 

p(s)v(s) 
(10) 

conservation of liquid mass : 

V* [pul(s)] = -V-j. (11) 

With the continuity equation and the definition of j 
given in equation (3) the conservation equation for 
liquid mass can be rewritten as 

dl 
dspuVs = D,V*(DVs). (12) 

In the above equations, u and p denote the velocity 
vector and pseudo pressure, respectively, of a flowing 
mixture consisting of liquid and vapor phases, as 
defined in Part I. 

Scalar equations (9) and (12) and vectorial equation 
(10) constitute a full system for four unknowns : the 
pressure, liquid saturation and two velocity com- 
ponents. To simplify further, equations (9), (10) and 
(12) are rendered dimensionless using L and u, as the 
characteristic length and velocity, respectively. Thus 
the governing equations become 



3762 C.-Y. WANG and C. ~E~KERMA~~ 

da. 
-& y(s)u* * vs = pe L-. v . ( jj’gs) fl5) 

?C 

where the superscript * denotes dimensionless vari- 
ables. The two-phase Peclet number in equation (15) 
is defined as 

(16) 

which is based on the capillary diffusion coeflicient. 
Though primarily introduced for the sake of 
simplicity, the two-phase Peclet number does have a 
physical interpretation similar to that of its counter- 
part in the single-phase case. In addition, it should be 
noted that in its definition we have employed the 
constant part, D,. of the capillary diffusion coefficient, 
but not its real magnitude. D,B,>,,,. This is because 
6,.X varies widely depending on the constitutive 
relations chosen (see below). Not using DC&,,,, thus. 
makes the formulation more general and convenient. 
In adopting such a formulation. however. it should 
be kept in mind that 6,,, may be several orders of 
magnitude smaller than unity. 

It is clear from equation (I 5) that the influence of 
capillary diffusion depends on the value of ~,,JPc’~+, 
or in another form, ~,~,~L~~~~~~~~. This value can be 
much larger than unity for low-permeability porous 
media. Based on the relative permeabilities and &he 
capillary pressure function given in Section 5. Table 
1 gives typical values of D,ri,,,, for a porous malrix 
with the porosity assumed to be 0.5 and for various 
fluids. It can be seen that the magnitude of DC&,, is 
comparable to that of the liquid dynamic viscosity, 

At the leading edge of the plate and outside the 
two-phase region. the liquid saturation is unity. In 
addition, for a constant external pressure difference, 
equation (I @I indicates that the bufk liquid flows with 
a constant velocity. Hence, the following conditions 

apply 

~*=l.s=l atx*=O. 

and forv* >z 5* whenh-* > 0 (17) 

where u* denotes the dimensionless velocity com- 

ponent in the .u-direction and 6* the dimensionless 
thickness of the two-phase region. 

On the solid surface the normal component of the 
mixture velocity must be equal to zero. Either lhe 
liquid saturation or its gradient also needs to be pre- 
scribed. In this analysis, it is assumed that the local 
wall heat flux is imposed in such a way that a uniform 
liquid saturation at the surface results (this boundary 
condition enables the similarity transformation ; see 
below). Hence 

L’* = 0, s = s, at 1‘* = 0 i IX) 

where z+ is the dimensionless velocity component in 
the y-direction. For s, = 0, dryout occurs at the wall. 
Once s, is specified, the wall heat flux distribution. 
y,,,(v). must be obtained as part of the solution; it 15 
determined by the energy balance at the wall. i.e. 

y_ = Ir,, - ( -- j,t (1% 

where,j, is the total diffusive mass flux at the wall and 
is given by 

(201 

Combining equations (19) and (20) and introducing 
a dimensionless wall heat flux. 

we have 

(21) 

3. BOUNDARY LAYER AP~R~XiMATl~NS 

Now we consider two-phase flow over a Aat plate 
within the two-dimensional geometry depicted in Fig. 
1. Because the governing equations (I 3)-( 15) and 
boundary conditions (17) and (18) strongly resemble 
the mathematical description of a convective mass 
transfer process in porous media, it is desirable to 
simplify equations (14) and (15) by invoking the 
classical boundary layer approximations. as in single- 
phase fluid dynamics. This approximation is valid if 
the two-phase Peclet number is much larger than 
unity. To this end, a perturbation scheme is first estab- 
lished in which 

Table I Typical vaIues of the capillary diffusion coefficient (DC&,,.) for various fiuids 
and porous media [kg m s-.- ‘1 

____~._________._.___l_.__.. _.. ____- -_.-II__ ..- 
Permeability, K [m’] 

Viscosity ..--“.-.- ___... -._-. 

Fluids N Ikg m s- ‘I ICI’- h lo- $0 10. I’ ,()- iI 

Water 
Freon-l 13 
Ethanol 
_-- 

2.85 x lo-& 2.46x lo-’ 2.46~ IO-” 7.78x IO-4 2.46~ 10-j 
4.94 X 1om4 6.14x lwS 6.14x IO-“ 1.94x IO-’ 6.14x 10 ’ 
4.28 x IO-” 3.86x IO-” 3.86x 1O-.4 1.22x 1O-4 3.86x IO’ ’ 
____--.--.l -.“.-_l_l--..--.----~- - 



(23) 
it is easy to show that the appropriate transformation 
is 

is chosen as the perturbation parameter. Then the Y(S) u = F’(V), s = S(V) (31) 

appropriate scaling transformation is where 

Y = JJ*/a, x = X*, u = U*, v= V*/E, P =p*. r) = Y/X”2 (32) 

(24) with the prime denoting differentiation with respect 
In light of the smallness of E, these transformations to q. The use of the continuity equation yields 
imply that the velocity component along the vertical 
surface dominates the one perpendicular to it, and 

y(.s)V= (IqF’-:F)X-“2 (33) 

that changes across the boundary layer are much where F is the dimensionless stream function. Elimin- 
steeper than those along it. ating the pressure P between equations (26) and (27) 

Substituting the above transformations into the by cross differentiating and then substituting equation 
system of equations (13)-( 15) and ordering according (33) into the resulting equation, as well as into equa- 
to powers of E, the following is obtained : tion (28), yields 

awu + awv) _ () 
(25) 

(/I(W) = 0 (34) 
ax ay 

and 
1 ap 

u=-r(s180ax (35) 

- Fy = 0(&Z) (27) The boundary conditions are transformed correspond- 
ingly into 

~vD)(u~+v~)=~(~~)+O(EI) F=O and s=s, at q=O (36) 

and 
(28) 

The corresponding boundary conditions at Y = 0 and 
F’ = 1 and s = 1 at q = Q (37) 

Y -+ co become with q = Q denoting the outer edge of the capillary 

Y=O; V=O and s=s, (29) 
layer where the longitudinal velocity component and 
liquid saturation match those at infinity. 

Y-+co; U=l and s=l. (30) It is interesting to note that when all mean prop- 

Equations (25)-(28) imply that the present two-phase 
erties of the two-phase mixture are constant, the above 

flow and the changes in the liquid saturation occur 
similarity equations reduce to the familiar version for 

only within a thin boundary layer in the vicinity of 
forced convective mass transfer in porous medi.a. 

the surface. Thus, if a steady-state is to prevail, the 
vapor generated at the wall must be carried down- 5. SOLUTION PROCEDURES 

stream by the flow parallel to the surface. 
There is an obvious similarity between equations 

In order to solve the similarity equations, equations 

(25)-(28) and the corresponding boundary layer (34) and (35) subject to equations (36) and (37), func- 

equations for porous media convective mass transfer tional forms of k,,(s), k,,(s) and J(s) must be explicitly 

adjacent to a surface. However, a fundamental differ- specified. Following Fatt and Klikoff [ 151, we assume 

ence that appears in the mean transport properties that the relative permeabilities can be expressed as 

should be noted. The mean properties of the two- k,, = S, k,, = (1 -S)3 (38) 
phase mixture exhibit drastic variations with liquid 
saturation (see below), so that it is impossible to make where k,, and k,, are functions of the normalized liquid 

the constant-property assumption as is usually done saturation, defined as : 

in the classical treatment of single-phase boundary 
layer flows. A more elaborate procedure is called for 

S-S,; 
s=-- 

1 --s,i (39) 
to deal with the difficulty arising from variable 
properties. where sli is the irreducible liquid saturation. For the 

sake of simplicity, sli is set to zero ; therefore S = s. 

4. A SIMILARITY TRANSFORMATION 
The capillary pressure function J(s) is assumed to be 
of the form [ 161 

As shown above, when E CC 1, a system of boundary 
layer equations can be obtained. Hence, the existence 
of a similarity solution can be anticipated and, indeed, 

Two-phase mixture model in capillary porous media-II 2763 

J(s) = 1.417(1 -S)-2.120(1 -S)2+ 1.263(1 -S)3 

(40) 
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FIG. 2. Constitutive relationships as functions of the nor- 
malized liquid saturation. 

which is an empirical correlation fitted to Leverett‘s 
experimental data [ 171. 

Figure 2 schematically shows the above constitutive 
relationships, while Fig. 3 displays the corresponding 
mean properties for a water-steam mixture. All quan- 
tities are normalized by their corresponding maximum 
values in order to show them in a single graph. While 
other physically reasonable functional forms of the 
constitutive relationships can be chosen, this is ex- 
pected to only affect the quantitative features of the 
results presented below. 

Equations (34) and (35) are numerically solved 

r______________ 

I 

0 0.2 0.4 0.6 0.8. 1 

Liquid Saturation, s 

FIG. 3. Normalized mean properties of the water--steam 
mixture with respect to the normalized liquid saturation, 
obtained by using the constitutive relationships shown 
in Fig. 2 and with Pm._ = 85.71 ; I&, = 4.959 and B,,, = 

I .7541 x 103. 

using the IMSL [IS] subroutine DGEAR which is 
based on the Gear stiff method. The use of this stiff 
method is needed, because the liquid saturation grows 
exponentially very near the wall, but rather slowly at 
a small distance away from it. Therefore, a variable 
step size was employed which can bc made as small 
as is needed for a desired accuracy and stability. but 
increased whenever possible to reduce the total com- 
puter time needed. As an indicator of the stiffness 
of the differential equations, the IMSL subroutine 
DVERK. which uses the standard fourth-order 
Runge-Kutta method, was also used at the initial 
stage of this numerical work. However. as s, was 
reduced below 0.15, this attempt was fruitless. 

In addition, a shooting procedure is incorporated 
which initiates the integration by guessing the value 
of s’(O) and adjusting this guess until the saturation 
becomes unity outside the boundary layer. To satisfy 
the boundary conditions at the edge of the two-phase 
layer, the integration length must be chosen to be 
greater than the boundary layer thickness. Although 
this thickness depends on the wall liquid saturation. 
as shown in Table 2, a distance of tl = 2 was found to 
be adequate in all numerical runs. 

Another difficulty associated with the present 
numerical implementation is the singularity of the 
problem at q = 0. when the wall saturation ap- 
proaches zero (i.e. the dryout condition), since the 
capillary diffusion coefficient drops to zero in this 
case. In order to overcome this difficulty, we develop 
an analytical solution of equations (34) and (39, 
which is valid only near the phase-change surface. To 
this end, equation (34) is first integrated once and 
boundary condition (37) is applied to give 

P(s)F’ = 1. (41) 

For s + 0, equations (41) and (35) reduce to 

(42) 

By seeking a series expansion solution, we tind 

Ii4 __24__‘12+... q << I. (43) 
s = a,,q 

77[ -J’(O)] 

Table 2. Summary of numerical solutions 

5, )Ih s’(0) QJ(Pe,&' ' 

0.0 1.689 0.2782t 1.451 x 10 7 
0.2 1.625 0.6354 1.107x 10 j 
0.4 1.388 0.5526 3.952 x LO ’ 
0.6 1.170 0.3892 1.181 x 10 -‘I 
0.8 0.850 0.1697 1.434x lo-’ 

t It is the value of u0 in this singular case. 
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where a, is a constant to be determined. This approxi- 
mate solution is then used to give the starting values 
for the numerical solution of equations (34) and (35) 
for the stream function and saturation profiles across 
the entire boundary layer. In this singular case, the 
shooting aim is replaced to find the constant a, rather 
than to determine the saturation gradient s’(O). 

6. RESULTS AND DISCUSSION 

Examination of the similarity equations reveals that 
the solution solely depends on the viscosity ratio, C, of 
a system. For the purpose of providing an illustrative 
example, calculations are performed for a water- 
steam system at atmospheric pressure. Thus, the value 
of Vis fixed at 0.01466. Although the density ratio also 
has a substantial influence on the physical behavior of 
the system considered, it does not enter the present 
solution because the stream function defined in equa- 
tion (31) incorporates the density effect and the 
numerical results for the velocity fields are properly 
scaled (see below). 

6.1. Results for two-phase mixture properties 
Results are first presented for the two-phase mix- 

ture properties, namely the liquid saturation, s(q), the 
scaled axial mixture velocity, yu*(q), and the scaled 
transverse mixture velocity, yu*(~)(XPe,~) ‘I*. These 
are shown in Figs. 4-6 as functions of the wall satu- 
ration, s,. 

The saturation profiles in Fig. 4 show several pecu- 
liar features. First, their overall shapes are complex in 
that their curvature change signs at various stages 
(most obviously from the curve corresponding to 
s, = 0). This is in contrast to the simple curve with a 
uniquely negative curvature found in convective mass 
transfer problems. The difference can be attributed to 

FIG. 

0.01 I I I I I 
0.0 0.4 0.6 1.2 1.6 

? 

4. Liquid saturation profiles vs q for several values of 
the wall saturation. 

FIG. 5. Scaled axial mixture velocity profiles yu* in the 
two-phase boundary layer for several values of the wall 

saturation. 

the fact that the mean transport properties of the two- 
phase mixture are highly nonlinear and even exhibit 
maxima at certain saturations, as can be seen from 
Fig. 3. Second, because the capillary diffusion 
coefficient becomes small as the liquid saturation 
approaches unity, the saturation profiles show bound- 
ary layers with relatively sharp edges. Last, as antici- 
pated, the two-phase boundary layer expands as the 
wall saturation decreases. The present numerical solu- 
tion can also provide quantitative information on the 
boundary layer thickness 6, i.e. the size of the two- 
phase zone. In this regard, we suppose that the edge 
of the boundary layer, i.e. at y* = 6*, is the point 
where s has a value of 0.99, and let qs denote the value 
of q at this point. It follows from equation (32) that 

6* = qa(x*/Pe2+) ‘I’. (44) 

I I I , , 

0.5 

0.4 

0.1 

FIG. 6. Scaled transverse mixture velocity profiles 
yo*(XPe,+)“’ in the two-phase boundary layer for several 

values of the wall saturation. 
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The values of qd for different wall saturations are 
tabulated in Table 2. 

The scaled axial velocity profiles yu* shown in Fig. 
5 also show a novel aspect: the velocity gradually 
decreases toward the wall, just as the liquid saturation 
does. Presumably this is due to the variable kinematic 
viscosity of the two-phase mixture. Because the vapor 
kinematic viscosity is much larger than that of the 
liquid, the mean viscosity of the mixture increases as 
the liquid composition decreases toward the wall, and 
therefore the mixture motion is retarded there. In the 
limiting case where the wall saturation approaches 
zero, the mixture in the immediate neighborhood of 
the wall becomes almost motionless axially. It should 
be cautioned that this apparent no-slip condition does 
not result from the so-called Brinkman modification 
of Darcy’s law. but from the strong interrelation 
between the flow and liquid saturation fields. It is 
because of this high degree of coupling that a two- 
phase problem like that considered here is not amen- 
able to analytical solutions. 

The positive values of the scaled transverse velocity 
profiles ;‘I’*( X P~T~~~) ’ ’ shown in Fig. 6 indicate that 
there is a displacement flow toward the outside of the 
boundary layer. Furthermore, more fluid is displaced 
as the wall saturation decreases. This behavior results 
from the fact that liquid flowing inside the boundary 
layer evaporates into vapor. forming a two-phase mix- 
ture that slows down due to the higher viscosity of the 
two-phase boundary layer, and is thus forced outside 
the layer because of continuity requirements. The 
viscous displacement is similar to that observed in 
boundary layer flows of single-phase fluids. 

6.2. Flow~field~s of’ the indiiaidual phases 

As stated in Part I, the present mixture model is 
capable not only of providing information on the flow 
field of the two-phase mixture as a whole, but also of 
predicting the flow fields of the individual phases. 
This is realized through the following relationships, 
established in Part I : 

p,u, = j + ipu (45) 

and 

p,u, = -j+(l -i)pu. (46) 

Rendered dimensionless by using u, as the charac- 
teristic velocity, these relationships can be rewritten 
in explicit component form as 

u: = I(s)F’(q) +s’[&)s’(?/)r/zx] 

and 

my (SF’- F) +&)s’(q) 1 
with fi denoting p\/p,. 

(47) 

(48) 

Figures 7(a) and (b) depict the vapor flow field put 
and liquid flow field I$, respectively, in a two-phase 
boundary layer corresponding to zero wall saturation. 
The dotted line in these plots represents the edge 01 
the boundary layer. A co-current upward two-phase 
flow is predicted as a result of the direction of the 
applied external pressure difference. The vapor moves 
primarily vertically except in the near-wall region 
where it is laterally generated. With increasing dis- 
tance from the wall, both components of the velocity 
diminish to zero, indicating that all vapor produced at 
the wall is carried downstream. Outside the boundary 
layer, the void space is occupied by liquid. 

Conversely. near the wall, the liquid velocity gradu- 
ally vanishes because the liquid continuously becomes 

x 0.5 

: 
0 1 

(a) 0.0 

.0r 

! 

.SL 

FIG. 7. Plots of How fields for both phases : (a) vapor velocity 
pu: ; (b) liquid velocity I$. The dotted line denotes the two- 

phase boundary layer edge. 
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vapor. In addition, the liquid has considerable lateral 
mation both inside and outside the boundary layer, 
owing to the viscous displacement effect mentioned 
earlier. 

6.3. Wall heatjux 
It is of interest to determine the distribution of the 

wall heat flux which corresponds to the constant liquid 
saturation condition imposed at the wall. Rewriting 
equation (22) in terms of the similarity variables yields 

QyI&%4 -V = hJC~‘(W sw # 0. (49) 

In the singular case (sw = 0), equation (49) should be 
modified as 

Q~J~~~e~~ X) = 0.2415a~ s, = 0. GO) 

As anticipated, Q, is proportional to the square root 
of both the Peclet number and the dimensionless axial 
length. The proportionality coefficients are given in 
Table 2 and also shown in Fig. 8. It can be observed 
that Q,/,/(Pe,, X) increases as the wall saturation 
is reduced, finally converging to a canstant value 
equaling 1.45 1 x lo- 3 _ which is the dryout limit. 

An integration procedure yields the following aver- 
age heat flux over the entire wall : 

QiJV”2rpJ = m&4wuM. WI 

Thus, the average dryout heat flux can be evaluated 
from 

& = 2.9 x 10-3Pe:$2 (52) 

when the fluid properties and porous medium par- 
ameters are given and the flow velocity is prescribed. 
Validation of the dryout prediction, equation (52), is 
not possible at the present time due to a lack of suit- 
able experimental data, although measurements of the 
dryout heat flux are available for a volumetrically 
heated porous bed [19]. 

A pressure-driven boiling flow adjacent to a heated 
plate embedded in a capillary porous medium was 

Flo. 8, Dependency of the dimensionless wall heat Aux Qx 
on the liquid saturation at the waif. 
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